
HUMAN EVOLUTION

Independent age estimates resolve the controversy
of ancient human footprints at White Sands
Jeffrey S. Pigati1*†, Kathleen B. Springer1*†, Jeffrey S. Honke1, David Wahl2,3,
Marie R. Champagne2, Susan R. H. Zimmerman4, Harrison J. Gray1, Vincent L. Santucci5,
Daniel Odess6‡, David Bustos7, Matthew R. Bennett8

Human footprints at White Sands National Park, New Mexico, USA, reportedly date to between ~23,000
and 21,000 years ago according to radiocarbon dating of seeds from the aquatic plant Ruppia cirrhosa.
These ages remain controversial because of potential old carbon reservoir effects that could compromise
their accuracy. We present new calibrated 14C ages of terrestrial pollen collected from the same
stratigraphic horizons as those of the Ruppia seeds, along with optically stimulated luminescence ages
of sediments from within the human footprint–bearing sequence, to evaluate the veracity of the seed
ages. The results show that the chronologic framework originally established for the White Sands footprints
is robust and reaffirm that humans were present in North America during the Last Glacial Maximum.

A
ncient footprints in White Sands Natio-
nal Park, New Mexico, USA (WHSA),
appear to place humans inNorthAmerica
during the Last GlacialMaximum (1). The
footprints and associated tracks of Pleis-

tocene megafauna at WHSA Locality 2 are
imprinted on multiple stratigraphic horizons
composed of fine-grained, gypsum-rich alluvium
intercalatedwith clay and silt thatwasdeposited
in amosaic of wet and dry environments along
the eastern margin of Paleolake Otero in the
Tularosa Basin (Fig. 1). Seeds from the aquatic
plantRuppia cirrhosa are found in situ within
thin clay laminae, either interbedded with the
footprint horizons or embedded in the foot-
prints themselves. A total of 11 aliquots of
Ruppia seeds yielded calibrated 14C ages that
maintain stratigraphic order and range from
~23 to 21 ka (ka, thousand years before pres-
ent; 0 years = 1950 CE) (1), constraining the
human footprints towithin the temporal bounds
of the Last Glacial Maximum (~26.5 to 19 or
20 ka) (2).
The findings at WHSA Locality 2 push back

the peopling of the Americas by thousands of
years and imply that early inhabitants and
megafauna coexisted for several millennia be-
fore the terminal Pleistocene extinction event

(3). This has important consequences for ar-
chaeology and allied fields, yet there has been
widespread debate as to the accuracy of the
Ruppia ages and therefore the antiquity of the
footprints. This debate is organized around
two lines of reasoning. The first is that R.
cirrhosa is an aquatic plant, so there is the
potential for uptake of old carbon fromground-
water, which would cause the seed ages to be
too old, a phenomenon known as the “hard-
water effect” (4, 5). The second is that Ruppia
seeds are physically robust and can be pre-
served in sediments over geologic timescales,
so it is possible that the seeds were exhumed

from older deposits and reworked into the sedi-
ments atWHSALocality 2. If so, the seedswould
provide only maximum-limiting ages for the
human footprints (6, 7).
To address the controversy regarding the

ages derived from Ruppia seeds, we obtained
radiocarbon ages of terrestrial pollen recovered
from the same stratigraphic intervals as those
of the seeds, as well as optically stimulated
luminescence (OSL) ages of quartz grains from
within the footprint horizon interval, to evaluate
the chronology of WHSA Locality 2. The dating
techniques, the sample types, and the acceler-
ator mass spectrometry facility involved in
this study are independent of those used by
Bennett et al. (1).
Terrestrial pollen is produced by cone-bearing

and fruit-bearing plants living on land and
fixing atmospheric carbon and therefore is
not subject to hard-water effects. However,
pollen grains are extremely lightweight and
are generally between 10 and 150 mm in diam-
eter (8), meaning that tens or even hundreds
of thousands of grains are required to achieve
the mass necessary for a single radiocarbon
measurement. Even though it is anexceptionally
laborious process, researchers have attempted
to date pollen for decades (9–17), but the results
have been mixed largely because of the diffi-
culty of isolating enough pollen grains from
other organic material to produce reliable
ages. The recent adoption of flow cytometry
to separate pollen grains from sediment and
other organic materials has overcome this
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Fig. 1. Ancient human footprints found at WHSA Locality 2. Photograph showing multiple in situ
footprints in track horizons TH1 (white arrows), TH2 (yellow arrows), TH3 (red arrows), and TH4 (black
arrows). Their stratigraphic positions and associated chronologic data are provided in Fig. 2.

Pigati et al., Science 382, 73–75 (2023) 6 October 2023 1 of 3

D
ow

nloaded from
 https://w

w
w

.science.org at U
nited States G

eological Survey on O
ctober 05, 2023

mailto:jpigati@usgs.gov
mailto:kspringer@usgs.gov
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fscience.adh5007&domain=pdf&date_stamp=2023-10-05


problem, and pollen samples often approach
purity after processing (18–21).
In this study, we collected large (>1 kg) sam-

ples of bulk sediment from the exact same
stratigraphic levels as those of the original sam-
ples of Ruppia seeds from WHSA Locality 2,
which yielded ages that range from 22.87 ±
0.30 to 21.13 ± 0.25 ka (Fig. 2) (1). The sam-
ples were subjected to rigorous chemical pre-
treatment andmicrosieving to remove asmuch
of the host material as possible, and the pollen
grains were separated from the remaining
residue bymeans of flow cytometry (22). All of
the WHSA Locality 2 samples contain pollen
assemblages that are indicative of a climate
that was much cooler and wetter than today
(22). Arboreal taxa include abundant Pinus
(pine) and some Picea (spruce),Abies (fir), and
Pseudotsuga (Douglas Fir), which indicate al-
titudinal lowering of nearby conifer forests
compared with present day and are consistent
with previous findings for the Last Glacial Max-
imum (23). Nonarboreal taxa are dominated
by Artemisia, reflecting a sagebrush steppe
that is not found in the region today (22). For
dating, we targeted conifer pollen because it is
relatively large (>70 mm) and has a relatively
thick exine, both of which result in increased
carbon content. We measured the 14C content
of three different samples fromWHSA Locality
2 that each contained ~75,000 pollen grains,
and the resulting calibrated ages range from
23.4 ± 2.5 ka to 22.6 ± 2.3 ka (Fig. 2) (22).
The uncertainties associated with the pollen

ages are relatively large because they required
blank corrections that are approximately an
order ofmagnitude larger thanwhat is typically
used in radiocarbon dating. Blank corrections
are performed on all radiocarbon samples to
account for small amounts of contaminant 14C
(usuallymodern) that is introduced to samples
during the various stages of processing, includ-
ing collection, handling, chemical pretreatment,
CO2 extraction, graphitization, and the isotopic
measurement (24–26). To isolate the pollen
grains, the samples analyzed in this study re-
quired extensive pretreatment procedures, so
in order to properly correct the resulting ages,
we also extracted and dated pollen from sedi-
ments that are known to be beyond the limit
of radiocarbon dating for use as a procedural
blank (22). Assuming that the same amount
of contamination was introduced to all of the
samples analyzed in this study, which is equi-
valent to an increase of ~2200 14C years or
2500 calendar years for the WHSA Locality 2
sequence (22), the resulting ages should be
viewed as being accurate, albeit with reduced
precision. Overall, the calibrated 14C ages of the
pollen samples from WHSA Locality 2 are sta-
tistically indistinguishable from the original seed
ages (Fig. 3), which supports the original chro-
nologic framework developed by Bennett et al.
(1). Last, even had we not undertaken this

pollen-specific approach for the blank correc-
tion, the calibrated pollen ages would still have
fallen within the Last Glacial Maximum (22).
In addition to radiocarbon methods, which

are based on radioactive decay, we used OSL
dating, which is based on the accumulation of
energy stored as trapped charge within the
crystal structure of a mineral and is a function
of background ionizing radiation (27). This
trapped charge is released and the geochro-
nometer is resetwhenamineral, typically quartz,
is exposed to sunlight or heat. For the sedi-
ments at WHSA Locality 2, an OSL age is
equivalent to the amount of time elapsed since
the quartz was deposited and sealed from sun-
light. Although the sediments atWHSA Locality
2 are dominated by gypsum and contain only

a small amount of quartz, we were able to ob-
tain three OSL ageminima from a single strat-
igraphic level located just below our lowest
radiocarbon age but still well within the human
footprint horizons. Collectively, they show the
minimum OSL age of the sampled horizon is
>21.5 ± 1.9 ka (22). As with the pollen results,
the OSL ages are statistically indistinguishable
from the calibrated 14C ages of the lowest
Ruppia seeds collected for dating from the
stratigraphic sequence (Fig. 2).
Both the calibrated 14C ages of pollen and

the OSL ages support the original ages obtained
from the Ruppia seeds at WHSA Locality 2,
but the accuracy of the age estimates from
each method must be evaluated individually
before they canbe accepted as reliable. Themost
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Fig. 2. Geologic context of chronologic samples. (A) Composite stratigraphy, calibrated 14C ages, and
sample numbers (in italics) of pollen and Ruppia seeds, as well as the minimum OSL age for sediments
exposed in the trench at WHSA Locality 2. The calibrated 14C ages were used to construct the age models
shown in Fig. 3. (B) Photograph looking south of the sediments exposed in the trench at WHSA Locality 2
along with locations of radiocarbon samples for Ruppia seeds (1a, 1b, and 1d) and pollen (1aa and 1dd) as
well as the three OSL samples (OSL-1, -2, and -3) (22). Pollen sample 1ff is located near the base of the
trench to the east (fig. S1). The large block cut out of the exposed face on the left side of the photograph was
sampled previously for U-Th series disequilibrium dating (1).
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common pitfall when dating pollen is that re-
working of pollen from older sediments could
potentially cause the ages to be too old (19, 28).
To evaluate this possibility, we dated multiple
aliquots of pollen extracted from sediments
collected at the surface of an active playa in
White Sands National Park. The pollen assem-
blage in the modern playa sediments is con-
sistent with the warm, dry conditions that
prevail in the Tularosa Basin today and is com-
posed primarily of nonarboreal taxa, including
Amaranthaceae, Asteraceae, and Poaceae (all
flowering plants) (22). The 14C content of the
playa conifer pollen (22) is indistinguishable
from current atmospheric 14C levels (29), which
shows that reworking of old pollen is inconse-
quential in this part of the Tularosa Basin to-
day. It follows that this also holds true for the
late Pleistocene, especially considering that
much of the basin was covered by Paleolake
Otero at that time.
Similarly, processes that take place after sed-

iments are deposited can potentially influ-
ence OSL ages by affecting the background
radiation field, causing them to be either too old
or too young. Such phenomena include changes
in pore water content, enrichment or depletion
of radiogenic isotopes over time, changes in the
flux of cosmogenic radiation, incomplete re-
moval of trapped charge during transport
(partial bleaching), and physical disturbance
of the grains frombioturbation. For theWHSA
Locality 2 samples, the impact of these varia-
bles is likelyminimal based on the consistency
of the measured pore water content between
the low-permeability, clay-rich sediment sam-
ples; the similarity in radiogenic isotope val-
ues between samples; ample Sun exposure
during transport prior to burial; and the intact
stratigraphy at the sample locations.
Resolution of the White Sands dating con-

troversy requires that there is no combination

of physical or chemical processes that could
cause the ages of three independent chrono-
logic data sets to converge on a single age range
while simultaneously being incorrect or biased.
It also requires that paleoenvironmental indi-
cators (pollen assemblages) be consistent with
regional records for the period in question. These
metrics are met in this study on the basis of the
nature of the chronologic techniques we used
and the materials to which they were applied.
Combined with the previously reported geo-
logic, hydrologic, stratigraphic, chronologic, and
climatic evidence (1, 30, 31), the congruence of
the calibrated 14C ages of the aquatic Ruppia
seeds, the calibrated 14C ages of the terrestrial
pollen grains, and the OSL ages support the
conclusion that humans were present in North
America during the Last Glacial Maximum.
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Fig. 3. Age dating and
modeling results. Modeled
ages for (A) track horizons TH1
through TH7 and (B) the start
and end boundaries for the
entire footprint horizon interval
based on the calibrated 14C
ages of pollen and Ruppia seeds.
Both figures were generated
using the Sequence function
in OxCal v.4.4.4 (32) and the
IntCal20 calibration curve (23),
which we accessed online
30 May 2023. Samples identified
as outliers at the 95% confidence
level were excluded from the
analyses (22).
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Editor’s summary
Traditionally, researchers believed that humans arrived in North America around 16,000 to 13,000 years ago. Recently,
however, evidence has accumulated supporting a much earlier date. In 2021, fossilized footprints from White Sands
National Park in New Mexico were dated to between 20,000 and 23,000 years ago, providing key evidence for earlier
occupation, although this finding was controversial. Pigati et al. returned to the White Sands footprints and obtained
new dates from multiple, highly reliable sources (see the Perspective by Philippsen). They, too, resolved dates of
20,000 to 23,000 years ago, reconfirming that humans were present far south of the ice sheets during the Last Glacial
Maximum. —Sacha Vignieri
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